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Summarizing multiple aspects of model performance 
in a single diagram 
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Abstract. A diagram has been devised that can provide a concise statistical summary of 
how well patterns match each other in terms of their correlation, their root-mean-square 
difference, and the ratio of their variances. Although the form of this diagram is general, 
it is especially useful in evaluating complex models, such as those used to study 
geophysical phenomena. Examples are given showing that the diagram can be used to 
summarize the relative merits of a collection of different models or to track changes in 
performance of a model as it is modified. Methods are suggested for indicating on these 
diagrams the statistical significance of apparent differences and the degree to which 
observational uncertainty and unforced internal variability limit the expected agreement 
between model-simulated and observed behaviors. The geometric relationship between the 
statistics plotted on the diagram also provides some guidance for devising skill scores that 
appropriately weight among the various measures of pattern correspondence. 

1. Introduction 

The usual initial step in validating models of natural phe- 
nomena is to determine whether their behavior resembles the 

observed. Typically, plots showing that some pattern of ob- 
served variation is reasonably well reproduced by the model 
are presented as evidence of its fidelity. For models with a 
multitude of variables and multiple dimensions (e.g., coupled 
atmosphere/ocean climate models), visual comparison of the 
simulated and observed fields becomes impractical, even if 
only a small fraction of the model output is considered. It is 
then necessary either to focus on some limited aspect of the 
physical system being described (e.g., a single field, such as 
surface air temperature, or a reduced domain, such as the 
zonally averaged annual mean distribution) or to use statistical 
summaries to quantify the overall correspondence between the 
modeled and observed behavior. 

In this paper a new diagram is described that can concisely 
summarize the degree of correspondence between simulated 
and observed fields. On this diagram the correlation coefficient 
and the root-mean-square (RMS) difference between the two 
fields, along with the ratio of the standard deviations of the two 
patterns, are all indicated by a single point on a two- 
dimensional (2-D) plot. Together, these statistics provide a 
quick summary of the degree of pattern correspondence, al- 
lowing one to gauge how accurately a model simulates the 
natural system. The diagram is particularly useful in assessing 
the relative merits of competing models and in monitoring 
overall performance as a model evolves. 

The primary aim of this paper is to describe this new type of 
diagram (section 2) and to illustrate its use in evaluating and 
monitoring climate model performance (section 3). Methods 
for indicating statistical significance of apparent differences, 
observational uncertainty, and fundamental limits to agree- 
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ment resulting from unforced internal variability are suggested 
in section 4. In section 5 the basis for defining appropriate 
"skill scores" is discussed. Finally, section 6 provides a sum- 
mary and brief discussion of other potential applications of the 
diagram introduced here. 

2. Theoretical Basis for the Diagram 
The statistic most often used to quantify pattern similarity is 

the correlation coefficient. The term "pattern" is used here in 
its generic sense, not restricted to spatial dimensions. Consider 
two variables, fn and rn, which are defined at N discrete points 
(in time and/or space). The correlation coefficient R between 
f and r is defined as 

N 

N • (f"- f) (r,, - ?) 
- , 

o'fo¾ 

where f and ? are the mean values and o- r and o¾ are the 
standard deviations of f and r, respectively. For grid cells of 
unequal area (1) would normally be modified in order to 
weight the summed elements by grid cell area (and the same 
weighting factors would be used in calculating o-f and o¾). 
Similarly, weighting factors for pressure thickness and time 
interval can be applied when appropriate. 

The correlation coefficient reaches a maximum value of 1 

when for all n, (fn - f) = ,(r• - ?), where , is a positive 
constant. In this case the two fields have the same centered 

pattern of variation but are not identical unless, = 1. Thus, 
from the correlation coefficient alone it is not possible to 
determine whether two patterns have the same amplitude of 
variation (as determined, for example, by their variances). 

The statistic most often used to quantify differences in two 
fields is the RMS difference E, which for fields f and r is 
defined by 

E I 

1/2 
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Figure 1. Geometric relationship between the correlation 
coefficient R, the centered pattern RMS error E', and the 
standard deviations crf and O'r of the test and reference fields, 
respectively. 

The correlation coefficient and the RMS difference provide 
Complementary statistical information quantifying the corre- 
spondence between two patterns, but for a more complete 
characterization of the fields the variances (or standard devi- 
ations) of the fields must also be given. All four of the above 
statistics (R, E', crp and err) are useful in comparisons of 
patterns, and it is possible to display all of them on a single, 
easily interpreted diagram. The key to constructing such a 
diagram is to recognize the relationship between the four sta- 
tistical quantities of interest here, 

o.• 2 E '2= + O' r -- 2o?rr•R, 

and the law of cosines, 

c 2= a 2 q- b 2- 2ab cos 4>, 

Again, the formula can be generalized for cases when grid cells 
should be weighted unequally. 

In order to isolate the differences in the patterns from the 
differences in the means of the two fields, E can be resolved 
into two components. The overall "bias" is defined as 

and the centered pattern RMS difference is defined by 

1 /v E' = • • [(fn - f) --(Yn- 7)] 2 ß 
n=l 

(2) 

The two components add quadratically to yield the full mean 
square difference: 

E2= •2 + E,2. (3) 

The pattern RMS difference approaches zero as two patterns 
become more alike, but for a given value of E' it is impossible 
to determine how much of the error is due to a difference in 

structure and phase and how much is simply due to a differ- 
ence in the amplitude of the variations. 

where a, b, and c are the lengths of the sides of a triangle and 
•b is the angle opposite side c. The geometric relationship 
between R, E', cry, and o' r is shown in Figure 1. 

With the above definitions and relationships it is now pos- 
sible to construct a diagram that statistically quantifies the 
degree of similarity between two fields. One field will be called 
the "reference" field, usually representing some observed 
state. The other field will be referred to as a "test" field (typ- 
ically a model-simulated field). The aim is to quantify how 
closely the test field resembles the reference field. In Figure 2, 
two points are plotted on a polar style graph, with the circle 
representing the reference field and the cross representing the 
test field. The radial distances from the origin to the points are 
proportional to the pattern standard deviations, and the azi- 
muthal positions give the correlation coefficient between the 
two fields. The radial lines are labeled by the cosine of the 
angle made with the abscissa, consistent with Figure 1. The 
dashed lines measure the distance from the reference point 
and, as a consequence of the relationship shown in Figure 1, 
indicate the RMS error (once any overall bias has been re- 
moved). 

The point representing the reference field is plotted along 

C, orrelation Coefficient 
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Figure 2. Diagram for displaying pattern statistics. The radial distance from the origin is proportional to the 
standard deviation of a pattern. The centered RMS difference between the test and reference field is 
proportional to their distance apart (in the same units as the standard deviation). The correlation between the 
two fields is given by the azimuthal position of the test field. 
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the abscissa. In this example, the reference field has a standard 
deviation of 5.5 units. The test field lies further from the origin 
in this example and has a standard deviation of-6.5 units. The 
correlation coefficient between the test field and the reference 

field is 0.7, and the centered pattern RMS difference between 
the two fields is a little less than 5 units. 

3. Two Applications 
Construction of an unfamiliar diagram is hardly warranted 

if, as in the simple example above, only a single pattern is 
compared to another. In that case one could simply report the 
values of O'f, fir, R, and E', and a graph would be quite 
unnecessary. If, however, one wanted to compare several pairs 
of patterns, as in the following examples, then a diagram can 
convey the information much more clearly than a table. 

3.1. Model Data Comparisons 

Plate 1 shows the annual cycle of rainfall over India as 
simulated by 28 atmospheric general circulation models 
(GCMs), along with an observational estimate (solid black 
line). The data are plotted after removing the annual mean 
precipitation, and both the model and observational values 
represent climatological monthly means computed from sev- 
eral years of data. The observational estimate shown is from 
Parthasarathy et al. [1994], and the model results are from the 
Atmospheric Model Intercomparison Project (AMIP), which 
is described by Gates et al. [1999]. Each model is assigned a 
letter which may be referred to in the following discussion. 

Plate 1 shows that models generally simulate the stronger 
precipitation during the monsoon season but with a wide range 
of estimates of the amplitude of the seasonal cycle. The precise 
phasing of the maximum precipitation also varies from one 
model to the next. It is quite difficult, however, to obtain 
information about any particular model from Plate 1; there are 
simply too many curves plotted to distinguish one from an- 
other. It is useful therefore to summarize statistically how well 
each simulated "pattern" (i.e., the annual cycle of rainfall) 
compares with the observed. This is done in Figure 3 where a 
letter identifies the statistics computed from each model's re- 
sults. Figure 3 clearly indicates which models exaggerate the 
amplitude of the annual cycle (e.g., models K, Q, and C) and 
which models grossly underestimate it (e.g., models I, V, and 
P). It also shows which model-simulated annual cycles are 
correctly phased (i.e., are well correlated with the observed) 
and which are not. In contrast to Plate 1, Figure 3 makes it easy 
to identify models that perform relatively well (e.g., models A, 
O, Z, and N) because they lie relatively close to the reference 
point. Among the poorer performers it is easy to distinguish 
between errors due to poor simulation of the amplitude of the 
annual cycle and errors due to incorrect phasing, as described 
next. An assessment of whether the apparent differences sug- 
gested by Plate 1 and Figure 3 between the models and obser- 
vations and between individual models are in fact statistically 
significant will be postponed until section 4. 

According to Figure 3 the RMS error in the annual cycle of 
rainfall over India is smallest for model A. Figure 4 confirms 
the close correspondence between model A and the observed 
field. Other inferences drawn from Figure 3 can also be con- 
firmed by Figure 4. For example, models A, B, and C are 
similarly well correlated with observations (i.e., the phasing of 
the annual cycle is correct), but the amplitude of the seasonal 
cycle is much too small in model B and far too large in model 

C. Model D, on the other hand, simulates the amplitude rea- 
sonably well, but the monsoon comes too early in the year, 
yielding a rather poor correlation. Thus Figure 3 provides 
much of the same information as Plate 1 but displays it in a way 
that allows one to flag problems in individual models. 

3.2. Tracking Changes in Model Performance 

In another application these diagrams can summarize 
changes in the performance of an individual model. Consider, 
for example, a climate model in which changes in parameter- 
ization schemes have been made. In general, such revisions will 
affect all the fields simulated by the model, and improvement 
in one aspect of a simulation might be offset by deterioration 
in some other respect. Thus it can be useful to summarize on 
a single diagram how well the model simulates a variety of 
fields (among them, for example, winds, temperatures, precip- 
itation, and cloud distribution). 

Because the units of measure are different for different 

fields, their statistics must be nondimensionalized before ap- 
pearing on the same graph. One way to do this is to normalize 
for each variable the RMS difference and the two standard 

deviations by the standard deviation of the corresponding ob- 
served field (•:' = E'/o¾, &f: o'f/o',., and 6- r : 1). This 
leaves the correlation coefficient unchanged and yields a nor- 
malized diagram like that shown in Figure 5. Note that the 
standard deviation of the reference (i.e., observed) field is 
normalized by itself and it will therefore always be plotted at 
unit distance from the origin along the abscissa. 

In Figure 5 a comparison between two versions of a model is 
made. The model has been run through a 10-year AMIP ex- 
periment with climatological monthly means computed for the 
10 fields shown. For each field, two points connected by an 
arrow are plotted, the tail of the arrow indicating the statistics 
for the original model version and the head of the arrow 
indicating the statistics for the revised model. For each of the 
fields the statistics quantify the correspondence between the 
simulated and observed time-varying global pattern of each 
field (i.e., the sums in (1) and (2) run over the 12-month 
climatology as well as over all longitude and latitude grid cells, 
weighted by grid cell area). All fields are mapped to a common 
4 ø latitude by 5 ø longitude grid before computing statistics. 

Many of the arrows in Figure 5 point in the general direction 
of the observed or reference point, indicating that the RMS 
difference between the simulated and observed fields has been 

reduced in the revised model. For sea level pressure, the arrow 
is oriented such that the simulated and observed variances are 

more nearly equal in the revised model, but the correlation 
between the two is slightly reduced. For this variable the RMS 
error is slightly reduced (the head of the arrow lies closer to the 
observed point than the tail) because the amplitude of the 
simulated variations in sea level pressure is closer to the ob- 
served, even though the correlation is poorer. The overall 
impression given by Figure 5 is that the model revisions have 
led to a general improvement in model performance. In order 
to prove that the apparent changes suggested by Figure 5 are, 
in fact, statistically significant, further analysis would be re- 
quired, as discussed in section 4. 

4. Indicating Statistical Significance, 
Observational Uncertainty, and Fundamental 
Limits to Expected Agreement 

In the examples shown in section 3 all statistics have been 
plotted as points, as if their positions were precise indicators of 
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Figure 3. Pattern statistics describing the climatological an- 
nual cycle of precipitation over India simulated by 28 models 
compared with the observed [Parthasarathy et al., 1994]. To 
simplify the plot, the isolines indicating correlation, standard 
deviation, and RMS error have been omitted. 

the true climate statistics. In practice, the statistics are based 
on finite samples, and therefore they represent only estimates 
of the true values. Since the estimates are, in fact, subject to 
sampling variability, then the differences in model perfor- 
mances suggested by a figure might be statistically insignificant. 
Similarly, a model that exhibits some apparent improvement in 
skill may, in fact, prove to be statistically indistinguishable from 
its predecessor. For proper assessment of model performance 
the statistical significance of apparent differences should be 
evaluated. 

Another shortcoming of the diagrams, as presented in sec- 
tion 3, is that neither the uncertainty in the observations nor 
the internal variability, which limits agreement between simu- 
lated and observed fields, has been indicated. Even if a perfect 
climate model could be devised (i.e., a model realistic in all 
respects), it should not agree exactly with observations that are 

lO i i i i i I i i i i i 

o3 8- • s 

E 6 .'" '".. --B I • .:':. '.. ..... c 

• 4 /'/ D rr 2 - 

ß 2 o __ ,;-.1 -. 

3- -4 
I I I I I I I I I I I 

-6 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Month 

Figure 4. Climatological annual cycle of precipitation over 
India (with annual mean removed) as observed and as simu- 
lated by four models (a subset selected from Plate 1). 
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Figure 5. Changes in normalized pattern statistics between 
two versions of a model. The statistics for the older version of 

the model are plotted at the tail of the arrows, and the arrows 
point to the statistics for the revised model. The RMS error 
and standard deviations have been normalized by the observed 
standard deviation of each field before plotting. The fields 
shown are sea level pressure (PSL), surface air temperature 
(TAS), total cloud fraction (CLT), precipitable water (PRW), 
500 hPa geopotential height (Z), precipitation (P), outgoing 
longwave radiation (OLR), 200 hPa temperature (T), 200 hPa 
meridional wind (V), and 200 hPa zonal wind (U). The model 
output and reference (observationally based) data were 
mapped to a common 4 ø x 5 ø grid before computing the 
statistics. The following reference data sets were used: for 
OLR, Harrison et al. [1990]; for P, Xie and Arkin [1997]; for 
TAS, Jones et al. [1999]; for CLT, Rossow and Schiffer [1991]; 
and for all other variables, Gibson et al. [1997]. 

to some extent uncertain and inaccurate. Moreover, because a 
certain fraction of the year-to-year differences in climate are 
not deterministically forced but arise due to internal instabil- 
ities in the system (e.g., weather "noise", quasi-biennial oscil- 
lation, E1 Nifio-Southern Oscillation, etc.), the climate simu- 
lated by a model, no matter how skillful, can never be expected 
to agree precisely with observations, no matter how accurate. 

In the verification of weather forecasts this latter constraint 

on agreement is associated primarily with theoretically under- 
stood limits of predictability. In the evaluation of coupled 
atmosphere/ocean climate model simulations started from ar- 
bitrary initial conditions the internal variability of the model 
should be expected to be uncorrelated with the internal com- 
ponent of the observed variations. Similarly, in atmospheric 
models forced by observed sea surface temperatures, as in 
AMIP, an unforced component of variability (in part due to 
weather noise) will limit the expected agreement between the 
simulated and observed fields. 

4.1. Statistical Significance of Differences 

One way to assess whether or not the apparent differences in 
model performance shown in Figure 3 are, in fact, significant is 
to consider an ensemble of simulations obtained from one or 

more of the models. For AMIP-like experiments such an en- 
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Figure 6. Pattern statistics describing the modeled and ob- 
served climatological annual cycle of precipitation over India 
computed from six independent simulations by model M. The 
close clustering of pluses calculated from the model M ensem- 
ble indicates that the differences between models shown in 

Figure 3 are generally likely to be statistically significant. 

semble is typically created by starting the simulations from 
different initial conditions but forcing them with the same 
time-varying sea surface temperatures and sea ice cover. Thus 
the weather (and to a much lesser extent the climate statistics) 
will differ between each pair of realizations. 

In the case of rainfall over India, results were obtained from 
a six-member ensemble of simulations by model M. The sta- 
tistics comparing each independent ensemble member to the 
observed are plotted as individual symbols below the M in 
Figure 6. The close grouping of pluses in the diagram indicates 
that the uncertainty in the point location attributable to sam- 
pling variability is not very large. A formal test for statistical 
significance could be performed based on the spread of points 
in Figure 6, but for a qualitative assessment this is unnecessary. 
If model M is typical, then the relatively large differences 
between model climate statistics seen in Plate 1 are likely to 
indicate true differences in most cases. The differences are 

unlikely to be explained simply by the different climate "sam- 
ples" generated by simulations of this kind. A similar approach 
for informally assessing statistical significance could be fol- 
lowed to determine whether the model improvements shown in 
Figure 5 are statistically significant. 

One limitation of this approach to assessing statistical sig- 
nificance is that it accounts only for the sampling variability in 
the model output, not in the observations. Although an esti- 
mate of the impact of sampling variability in the observations 
will not be carried out here, there are several possible ways one 
might proceed. One could split the record into two or more 
time periods and then analyze each period independently. The 
differences in statistics between the subsamples could then be 
attributed to both real differences in correspondence between 
the simulated and observed fields and differences due to sam- 

pling variability. With this approach an upper limit on the 
sampling variability could be established. Another approach 

would be to use an ensemble of simulations by a single model 
as an artificial replacement for the observations. A second 
ensemble of simulations by a different model could then be 
compared to a single member of the first ensemble, generating 
a plot similar to Figure 6. The effects of sampling variability in 
the observations could then be assessed by comparing the 
second ensemble to the other members of the first ensemble 

and quantifying the increase in the spread of points. If the 
sampling distribution of the first ensemble were similar to the 
sampling distribution of the observed climate system, then the 
effects of sampling variability could be accurately appraised. A 
third option for evaluating the sampling variability, at least in 
the comparison of climatological data computed from many 
time samples, would be to apply "bootstrap" techniques to 
sample both the model output and the observational data. If 
such a technique were used, care would be required to account 
for the temporal and spatial correlation structure of the data 
[Wilks, 1997]. 

4.2. Observational Uncertainty 

Because of a host of problems in accurately measuring re- 
gional precipitation, observational estimates are thought to be 
highly uncertain. When two independent observational esti- 
mates can be obtained that are thought to be of more or less 
comparable reliability, then the difference between the two can 
be used as an indication of observational uncertainty. As an 
illustration of this point, an alternative to the India rainfall 
estimate is plotted in Figure 7 based on data from Xie and 
Arkin [1997]. Also plotted for comparison are model results, 
which will be discussed later in this section. The distance be- 

tween the point labeled Xie-Arkin and the reference point 
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Figure 7. Normalized pattern statistics showing differences 
between two observational estimates of rainfall (the reference 
data set given by Parthasarathy et al. [1994] and the alternative 
data set (indicated by an asterisk) given by Xie and Arkin 
[1997]). Also shown are differences between the 28 models and 
each of the reference data sets (uppercase letters for the 28 
models compared to the Parthasarathy et al. [1994] reference 
and lowercase letters for the 28 models compared to the Xie 
and Arkin [1997] reference). 
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(referring to observations from Parthasarathy et al. [1994]) pro- 
vides one measure of observational uncertainty, although one 
should be aware that the two data sets are not truly indepen- 
dent. The correlation between the two observational estimates 

is very high (0.997), but the amplitude of the seasonal cycle is 
substantially smaller according to the Xie and Arkin [1997] 
data. If both observational estimates were equally believable, 
then one should not expect the RMS differences between the 
models and the reference observational data set to be smaller 

than the differences between the two observational data sets. 

The other points plotted in Figure 7, labeled with letters, 
indicate model results. The capital letters reproduce the results 
of Figure 3 in which the models were compared to the 
Parthasarathy et al. [1994] observational data. The correspond- 
ing lowercase letters indicate the statistics calculated when the 
same model results are compared with the Xie andArkin [1997] 
observational data. Thus the reference for the capital letters 
(and for the point labeled Xie-Arkin) is the Parthasarathy et al. 
[1994] data, and the reference for the lowercase letters is the 
Xie and Arkin [1997] data. Note that for all models the nor- 
malized standard deviation increases by the ratio of the vari- 
ances of the two observational data sets, but for most models 
the correlation with each of the observational data sets is 

similar. In a few cases, however, the correlation can change; 
compare, for example, differences between G and g and D and 
d. 

Another way to compare model-simulated patterns to two 
different reference fields is to extend the diagram to three 
dimensions. In this case one of the reference points (obsl) 
would be plotted along one axis (say the x axis) and the other 
(obs2) would be plotted in the xy plane indicating its statistical 
relationship to the first. One or more test points could then be 
plotted in 3-D space such that the distance between each test 
point and each of the reference points would be equal to their 
respective RMS differences. Distances from the origin would 
again indicate the standard deviation of each pattern, and the 
cosines of the three angles defined by the position vectors of 
the three points would indicate the correlation between the 
pattern pairs (i.e., model-obsl, model-obs2, and obsl-obs2). In 
practice, this kind of plot might prove to be of limited value 
because visualizing a 3-D image on a 2-D surface is difficult 
unless it can be rotated using an animated sequence of images 
(e.g., on a video screen). 

4.3. Fundamental Limits to Expected Agreement 
Between Simulated and Observed Fields 

Even if all errors could be eliminated from a model and even 

if observational uncertainties could be reduced to zero, the 
simulated and observed climates cannot be expected to be 
identical because internal (unforced) variations of climate (i.e., 
noise in this context) will never be exactly the same. Although 
a good model should be able to simulate accurately the fre- 
quency of various unforced weather and climate events, the 
exact phasing of those events cannot be expected to coincide 
with the observational record (except in cases where a model is 
initialized from observations and has not yet reached funda- 
mental predictability limits). The noise of these unforced vari- 
ations prevents exact agreement between simulated and ob- 
served climate. In order to estimate how well a perfect model 
should agree with perfectly accurate observations, one can 
again consider differences in individual members of the en- 
semble of simulations generated by a single model, this time 
comparing the individual members to each other. Any differ- 
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Figure 8. Normalized pattern statistics showing differences 
within a s•-member ensemble of simulations by model M. 
Thir• points are plotted, •o for each pair of ensemble mem- 
bers; one with the first realization taken as the reference and 
the other with the second realization taken as the reference. 

The correlation for each pair is not, of course, dependent on 
which realization Js chosen as the reference, but the ratio of 
their standard deviations is dependent, so the points scatter 
symmetrically about the arc drawn at unit distance from the 
origin. Only 15 points are truly independent. 

ences in the individual ensemble members must arise from the 

unforced variations that also fundamentally limit potential 
agreement between model-simulated and observed climate. 

As an illustration of this point, the normalized statistics for 
rainfall over India have been computed between pairs of sim- 
ulations comprising model M's six-member ensemble. Each 
realization of the climatic state is compared to the others, 
yielding 15 unique pairs. The statistics obtained by considering 
one realization of each pair as the reference field and the other 
as the test field are plotted as dots in Figure 8. The high 
correlation between pairs of realizations indicates that accord- 
ing to this model (run under AMIP experimental conditions) 
the monthly mean climatology of rainfall over India (calculated 
from 10 simulated years of data) is largely determined by the 
imposed boundary conditions (i.e., insolation pattern, sea sur- 
face temperatures, etc.) and that noise resulting from internal 
variations is relatively small. If the unforced variability, which 
gives rise to the scatter of points in Figure 8, is realistically 
represented by model M, then even the most skillful of AMIP 
models can potentially be improved by a substantial amount 
before reaching the fundamental limits to agreement imposed 
by essentially unpredictable internal variability. A related con- 
clusion is that since the correlations between modeled and 

observed patterns shown in Figure 3 are smaller than any of 
the intraensemble correlations shown in Figure 8, it is likely 
that the apparent differences between model results and ob- 
servations are, in fact, statistically significant and could not be 
accounted for by sampling differences. 

Note that in Figure 8 the spread of ensemble points in the 
radial direction indicates the degree to which unforced vari- 
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Figure 9. Pattern statistics for one of the AMIP models (in- 
dicated by the tail of each arrow) and an estimate of the 
maximum, potentially attainable agreement with observations, 
given unforced internal weather and climate variations, as in- 
ferred from an ensemble of simulations by model M (indicated 
by the head of each arrow). The fields shown are described in 
Figure 5. In contrast to Figure 5, which shows statistics com- 
puted from the annual cycle climatology (in which 12 climato- 
logical monthly mean samples were used in computing the 
statistics at each grid cell), here the full space-time statistics are 
plotted (i.e., 120 time samples, accounting for year-to-year 
variability, are used in computing the statistics). 

ability affects the pattern amplitude, whereas the spread in 
azimuthal angle is related to its effect on the phase. Also note 
that in the case of the amplitude of annual cycle of India 
rainfall, observational uncertainty limits the expected agree- 
ment between simulated and observed patterns even more 
than unforced variability. Finally, note that in AMIP-like ex- 
periments the differences in climatological statistics computed 
from different members of an ensemble will decrease as the 

number of years simulated increases. Thus, compared to the 
10-year AMIP simulation results shown in Figure 8, one should 
expect that in a similar 20-year AMIP simulation, the points 
would cluster closer together and move toward the abscissa. 

Figure 9 provides another example in which the diagram is 
used to indicate how far a model is from potentially realizable 
statistical agreement with observations. For each field the ar- 
rows originate at the point comparing an observed field to the 
corresponding field simulated by a particular AMIP model. 
The arrows terminate at points indicating the maximum agree- 
ment attainable, given internal variability in the system. The 
model shown in Figure 9 is one of the better AMIP models, 
and the estimates of the fundamental limits to agreement are 
obtained from model M's ensemble of AMIP simulations, as 
described above (with the arrowhead located at the center of 
the cluster of points). The longer the arrow, the greater the 
potential for model improvement. For some fields (e.g., cloud 
fraction and precipitation) the model is far from the funda- 
mental limits, but for others (e.g., geopotential height), there is 
very little room for improvement in the statistics given here. 

In contrast to the climatological mean pattern statistics given 

in Figure 5 (computed from the climatological annual cycle 
data), Figure 9 shows statistics calculated from the 120 indi- 
vidual monthly mean fields available from the 10-year AMIP 
simulations (thereby including interannual variability). The 
statistical differences among the individual monthly mean 
fields are generally larger than the differences between clima- 
tological fields because a larger fraction of the total variance is 
ascribable to unforced, internal variability. Thus in Figure 9 the 
arrowheads lie farther from the reference point than the cor- 
responding statistics calculated from climatological annual cy- 
cle data. Note also that according to Figure 9, there are ap- 
parently large differences in the potential for agreement 
between simulated and observed data, depending on the field 
analyzed. These differences are determined by the relative 
contributions of forced and unforced variability to the total 
pattern of variation of each field. 

Boer and Lambert [2001] have suggested an alternative way 
to factor out the weather and climate noise which limit agree- 
ment between simulated and observed fields. They estimate 
the limits to agreement between simulated and observed pat- 
terns of variability that can be expected in the face of unforced 
natural variability and then rotate each point in the diagram 
clockwise about the origin such that the distance to the refer- 
ence point (located at unit distance along the abscissa) is now 
proportional to the error in the pattern that remains after 
removing the component that is expected to be uncorrelated 
with the observed. This modification has the virtue that for all 

fields, independent of the differing influence of internal vari- 
ability, the "goal" is the same: to reach the reference point 
along the x axis. There are, however, disadvantages in rotating 
the points. The correlation coefficient between the modeled 
and observed field no longer appears on the diagram but in- 
stead is replaced by an "effective" correlation coefficient, 
which is defined as a weighted difference between two true 
correlation coefficients. Because the effective correlation co- 

efficient is a derived quantity, interpretation is more difficult. 
For example, if the interannual variability (i.e., interannual 
anomalies) simulated by an unforced coupled atmosphere/ 
ocean GCM were compared to observations, the true correla- 
tion would be near zero (even for a realistic model), whereas 
the effective correlation would be near 1, even for a poorly 
performing model. This difference in true versus effective cor- 
relation could cause confusion. One could also argue that 
explicitly indicating the limits to potential agreement between 
simulated and observed fields, as in Figure 8, provides useful 
information that would be hidden by Boer and Lambert's [2001] 
diagram. 

5. Evaluating Model Skill 
In the case of mean sea level pressure in Figure 5 the cor- 

relation decreased (indicating lower pattern similarity) but the 
RMS error was reduced (indicating closer agreement with ob- 
servations). Should one conclude that the model skill has im- 
proved or not? A relatively skillful model should be able to 
accurately simulate both the amplitude and pattern of variabil- 
ity. Which of these factors is more important depends on the 
application and to a certain extent must be decided subjec- 
tively. Thus it is not possible to define a single skill score that 
would be universally considered most appropriate. Conse- 
quently, several different skill scores have been proposed [e.g., 
Murphy, 1988; Murphy and Epstein, 1989; Williamson, 1995; 
Watterson, 1996; Watterson and Dix, 1999; Potts et al., 1996]. 
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Nevertheless, it is not difficult to define attributes that are 
desirable in a skill score. For any given variance the score 
should increase monotonically with increasing correlation, and 
for any given correlation the score should increase as the 
modeled variance approaches the observed variance. Tradi- 
tionally, skill scores have been defined to vary from zero (least 
skillful) to one (most skillful). Note that in the case of rela- 
tively low correlation the inverse of the RMS error does not 
satisfy the criterion that skill should increase as the simulated 
variance approaches the observed. Thus a reduction in the 
RMS error may not necessarily be judged an improvement in 
skill. 

One of the least complicated scores that fulfills the above 
requirements is defined as 

4(1 + R) 

S: (&• + 1/&•)2(1 + R0)' (4) 
where R o is the maximum correlation attainable (according to 
the fundamental limits discussed in section 4.3 and as indi- 

cated, for example, by the position of the arrowheads in Figure 
9). As the model variance approaches the observed variance 
(i.e., as 6-/-• 1) and as R -• Ro, the skill approaches unity. 
Under this definition, skill decreases toward zero as the cor- 
relation becomes more and more negative or as the model 
variance approaches either zero or infinity. For fixed variance 
the skill increases linearly with correlation. Note also that for 
small model variance, skill is proportional to the variance, and 
for large variance, skill is inversely proportional to the vari- 
ance. 

The above skill score can be applied to the India rainfall 
statistics shown in Figure 3, which are plotted again in Figure 
10 along with contours of constant skill. The skill score was 
defined with R o set equal to the mean of the 30 intraensemble 
correlation values shown in Figure 8 (i.e., R o = 0.9976). In 
addition to the properties guaranteed by the formulation, skill 
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Figure 10. Isolines of one suggested measure of skill, as de- 
fined by (4), drawn on a diagram that indicates pattern statis- 
tics for the climatological annual cycle of precipitation over 
India simulated by 28 models. 
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Figure 11. As in Figure 10, but for an alternative measure of 
skill defined by (5). 

is seen to decrease generally with increasing RMS error, but at 
low correlation, models with too little variability are penalized. 
If in a particular application such a penalty were considered 
too stiff, a different skill score could be devised that would 
downweight its importance. 

Under the above definition the skill depends on R o, which is 
the maximum potentially realizable correlation, given the noise 
associated with unforced variability. Estimates of R o arc un- 
doubtedly model-dependent, and for that reason, the value of 
R o should always be recorded whenever a skill score is re- 
ported. 

According to the skill score defined by (4), model E is 
slightly more skillful than model M in spite of its poorer cor- 
relation. To increase the penalty imposed for low correlation, 
(4) could be slightly modified as follows: 

4(1 + 1) 4 

s: + + 
Once again the India rainfall statistics can be plotted, this 

time drawing the skill score isolines defined by (5). Figure 11 
shows that according to this skill score, model E would now be 
judged less skillful than model M. This illustrates that it is not 
difficult to define skill scores that preferentially reward model- 
simulated patterns that are highly correlated with observations 
or, alternatively, place more emphasis on correct simulation of 
the pattern variance. 

6. Summary and Further Applications 
The diagram proposed here provides a way of plotting on a 

2-D graph three statistics that indicate how closely a pattern 
matches observations. These statistics make it easy to deter- 
mine how much of the overall RMS difference in patterns is 
attributable to a difference in variance and how much is due to 

poor pattern correlation. As shown in the examples, the dia- 
gram can be used in a variety of ways. The first example 
involved comparison of the simulated and observed climato- 
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logical annual cycle of precipitation over India. The new dia- 
gram made it easy to distinguish among 28 models and to 
determine which models were in relatively good agreement 
with observations. In other examples, the compared fields were 
functions of both space and time, in which case, direct visual 
comparison of the full simulated and observed fields would be 
exceedingly difficult. In this case, statistical measures of the 
correspondence between modeled and observed fields offered 
a practical way of assessing and summarizing model skill. 

The diagram described here is beginning to see use in some 
recent studies [e.g., Ri•isi•nen, 1997; Gates et al., 1999; Lambert 
and Boer, 2001], and one can easily think of a number of other 
applications where it might be especially helpful in summariz- 
ing an analysis. For example, it is often quite useful to resolve 
some complex pattern into components and then to evaluate 
how well each component is simulated. Commonly, fields are 
resolved into a zonal mean component plus a deviation from 
the zonal mean. Similarly, the climatological annual cycle of a 
pattern is often considered separately from the annual mean 
pattern or from "anomaly" fields defined as deviations from 
the climatological annual cycle. It can be useful to summarize 
how accurately each individual component is simulated by a 
model, and this can be done on a single plot. Similarly, differ- 
ent scales of variability can be extracted from a pattern 
(through filtering or spectral decomposition), and the diagram 
can show how model skill depends on scale. 

Although the diagram has been designed to convey infor- 
mation about centered pattern differences, it is also possible to 
indicate differences in overall means (i.e., the bias defined in 
section 2). This can be done on the diagram by attaching to 
each plotted point a line segment drawn at a right angle to the 
straight line defined by the point and the reference point. If the 
length of the attached line segment is equal to the bias, then 
the distance from the reference point to the end of the line 
segment will be equal to the total (uncentered) RMS error 
(i.e., bias error plus pattern RMS error), according to (3). 

An ensemble of simulations by a single model can be used 
both in the assessment of statistical significance of apparent 
differences and also to estimate the degree to which internal 
weather and climate variations limit potential agreement be- 
tween model simulations and observations. In the case of mul- 

tiannual climatological fields these fundamental limits to 
agreement generally decrease with the number of years in- 
cluded in the climatology (under an assumption of stationar- 
ity). However, in the case of statistics computed from data that 
have not been averaged to suppress the influence of unforced 
internal variability (e.g., a monthly mean time series that in- 
cludes year-to-year variability) the differences between model- 
simulated and observed fields cannot be expected to approach 
zero, even if the model is perfect and the observations are 
error free. These fundamental limits to agreement between 
models and observations are different for different fields and 

will generally vary with the time and space scales considered. 
One consequence of this fact is that a field that is rather poorly 
simulated may have relatively little potential for improvement 
compared to another field that is better simulated. 

Two different skill scores have also been proposed here, but 
these were offered as illustrative examples and will, it is hoped, 
spur further work in this area. It is clear that no single measure 
is sufficient to quantify what is perceived as model skill, even 
for a single variable, but some of the criteria that should be 

considered have been discussed. The geometric relationship 
between the RMS difference, the correlation coefficient, and 
the ratio of variances between two patterns, which underlies 
the diagram proposed here, may provide some guidance in 
devising skill scores that appropriately penalize for discrepan- 
cies in variance and discrepancies in pattern similarity. 
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